Overall Setup	Exercise 1a)	Exercise 1b)	Exercise 1c)	Exercise 1d)
0	0	0	0	00

International Trade Problem Set #5 The Footloose Factor Model

Armando Näf

Universität Bern

March 27, 2020

Armando Näf

Universität Bern

International Trade Problem Set #5 The Footloose Factor Model

• 0 0 0 00	Overall Setup	Exercise 1a)	Exercise 1b)	Exercise 1c)	Exercise 1d)
	•	0	0	0	00

Setup

Footloose Factor model

Remember: We have an immobile factor that is fixed to a country and a mobile factor that can move across boarders.

- Two countries: A and B. Both participate in the world market.
- They produce two goods: Food and clothing.
 - Food requires labour as input factor
 - Clothing requires both labour and capital as input factors.
- Labour is not mobile, while capital is mobile across countries (footloose).
- Technology is given by the following:
 - Country A: Food requires $\alpha_{LF}^A = 2$, Clothing requires: $\alpha_{LC}^A = 4$, $\alpha_{KC}^A = 0.8$
 - Country B: Food requires $\alpha_{LF}^{B} = 5$, Clothing requires: $\alpha_{LC}^{B} = 6$, $\alpha_{KC}^{B} = 1$
- Prices are denoted in units of food (or equiv. world price of food is given gy $P_F = 1$)

Overall Setup	Exercise 1a)	Exercise 1b)	Exercise 1c)	Exercise 1d)
O		O	o	00

$$\begin{array}{l} \mbox{Country A: Food: } \alpha^A_{LF}=2 \mbox{ Clothing } \alpha^A_{LC}=4, \alpha^A_{KC}=0.8 \\ \mbox{Country B: Food: } \alpha^B_{LF}=5 \mbox{ Clothing } \alpha^B_{LC}=6, \alpha^B_{KC}=1 \end{array}$$

- a) Determine the maximal capital rental rate (denoted R) that each country can pay in dependence of the world price of clothing P_C ?
 - Let's look at Country A: Firms can at most pay a rental rate that will set their marginal benefits equal to their marginal costs: $P_C = \alpha^I_{LC} W_A + \alpha^A_{KC} R_A$
 - ▶ Because labour can be employed in both sectors the wage must be equivalent. Thus we can determine the wage by looking at the Food sector: $P_F = \alpha_{LF}^A W_A \Rightarrow W_A = 0.5$
 - ► Therefore the maximal rental rate that a firm in country A can pay is given by: $P_C = 2 + 0.8R_A \Rightarrow R_A^{max} = \frac{5}{4}P_C - 2.5$
 - The solution for country B can be obtained in a similar fashion: $\Rightarrow R_B^{\text{max}} = P_C 1.2$

Overall Setup	Exercise 1a)	Exercise 1b)	Exercise 1c)	Exercise 1d)
O	O	•	o	00

Country A: $R_A^{\text{max}} = \frac{5}{4}P_C - 2.5$ Country B: $R_B^{\text{max}} = P_C - 1.2$

b) At which world price of clothing can country A offer a higher capital rental rate, at which world price country B?

• Country A can offer a higher capital rental rate if $R_A^{\text{max}} > R_B^{\text{max}}$.

$$R_A^{\max} > R_B^{\max}$$

$$\frac{5}{4}P_C - 2.5 > P_C - 1.2$$

$$P_C > 5.2$$

▶ Thus country A can offer a higher capital rental rate if $P_C > 5.2$ and country B can offer a higher rental rate if $P_C < 5.2$

Armando Näf

Universität Bern

International Trade Problem Set #5 The Footloose Factor Model

Overall Setup	Exercise 1a)	Exercise 1b)	Exercise 1c)	Exercise 1d)
O	O	o		00

Exercise 1

$$\begin{array}{l} \mbox{Country A: Food: } \alpha^A_{LF}=2 \mbox{ Clothing } \alpha^A_{LC}=4, \alpha^A_{KC}=0.8 \\ \mbox{Country B: Food: } \alpha^B_{LF}=5 \mbox{ Clothing } \alpha^B_{LC}=6, \alpha^B_{KC}=1 \end{array}$$

- c) Suppose that the world price of clothing is given by $P_C = 3$ and the world price of capital is given by R = 1. Which country produces which good(s)? What is the wage rate in each country?
 - Due to perfect competition it must hold that marginal revenue equals marginal costs:
 - Country A: Clothing sector: $P_C = 4W^A + 0.8R \Rightarrow W^A = 0.55$
 - In question a) we have seen that in the food sector the firms can pay a wage at most equal to 0.5, which is below the wage in the clothing sector and hence the food sector will not be able to employ any labour. Therefore country A will produce only clothing.
 - Country B: Clothing sector: $P_C = 6W^B + R \Rightarrow W^B = \frac{1}{3}$
 - ▶ By the same argument as for country A, country B will only produce clothing because the wage in the clothing sector $(W^B = \frac{1}{3})$ is higher than the wage in the food sector $(\hat{W}^B_F = 0.2)$.
 - Both countries will only produce clothing.

Overall Setup	Exercise 1a)	Exercise 1b)	Exercise 1c)	Exercise 1d)
O	O	O	O	●○

d) Draw a diagram with the rental rate on the X-axis and the price of clothing on the Y-axis, such as the one given in the lecture notes. The world price of food is given by $P_F = 1$. Draw a point (i.e. a combination of the world rental rate and the world price of clothing) at which country A produces only clothing and country B only food. Draw another point at which country A produces both food and clothing, and country B only food.

To find the required points we need to find the lines at which both countries are indifferent between producing either good.

• Country A:
$$\frac{P_C}{P_F} = \frac{\alpha_{LC}^A}{\alpha_{LF}^A} + \alpha_{KC}^A \frac{R}{P_F}$$

► If $\frac{R}{P_F}$ is below the value that satisfies this expression, i.e. if $\frac{R}{P_F} < \frac{P_C}{P_F} \frac{1}{\alpha_{KC}^A} - \frac{\alpha_{LC}^A}{\alpha_{LF}^A \alpha_{KC}^A}$ then *A* will produce only clothing.

 Equivalently if it is above the value it will only produce Food.

Overall Setup	Exercise 1a)	Exercise 1b)	Exercise 1c)	Exercise 1d)
O	O	O	o	○●

- d) Draw a diagram with the rental rate on the X-axis and the price of clothing on the Y-axis, such as the one given in the lecture notes. The world price of food is given by $P_F = 1$. Draw a point (i.e. a combination of the world rental rate and the world price of clothing) at which country A produces only clothing and country B only food. Draw another point at which country A produces both food and clothing, and country B only food.
 - Country B: $\frac{P_C}{P_F} = 1.2 + 1 \cdot \frac{R}{P_F}$
 - ▶ If $\frac{R}{P_F}$ is below the value that satisfies the previous equation, i.e. if $\frac{R}{P_F} < \frac{P_C}{P_F} 1.2$ then *B* will produce only clothing.
 - Equivalently if it is above the value it will only produce Food.
 - If the rental rate is such that the expression holds with equality than the country is indifferent between producing either good
 - Therefore at P₁ country A will produce only clothing and country B only Food, where as at P₂ country A will produce both goods and country B only food.